366 research outputs found

    The Glass Transition in Driven Granular Fluids: A Mode-Coupling Approach

    Full text link
    We consider the stationary state of a fluid comprised of inelastic hard spheres or disks under the influence of a random, momentum-conserving external force. Starting from the microscopic description of the dynamics, we derive a nonlinear equation of motion for the coherent scattering function in two and three space dimensions. A glass transition is observed for all coefficients of restitution, epsilon, at a critical packing fraction, phi_c(epsilon), below random close packing. The divergence of timescales at the glass-transition implies a dependence on compression rate upon further increase of the density - similar to the cooling rate dependence of a thermal glass. The critical dynamics for coherent motion as well as tagged particle dynamics is analyzed and shown to be non-universal with exponents depending on space dimension and degree of dissipation.Comment: 16 pages, 9 figure

    Energy Landscape and Overlap Distribution of Binary Lennard-Jones Glasses

    Full text link
    We study the distribution of overlaps of glassy minima, taking proper care of residual symmetries of the system. Ensembles of locally stable, low lying glassy states are efficiently generated by rapid cooling from the liquid phase which has been equilibrated at a temperature TrunT_{run}. Varying TrunT_{run}, we observe a transition from a regime where a broad range of states are sampled to a regime where the system is almost always trapped in a metastable glassy state. We do not observe any structure in the distribution of overlaps of glassy minima, but find only very weak correlations, comparable in size to those of two liquid configurations.Comment: 7 pages, 5 figures, uses europhys-style. Minor notational changes, typos correcte

    Partitioning of energy in highly polydisperse granular gases

    Full text link
    A highly polydisperse granular gas is modeled by a continuous distribution of particle sizes, a, giving rise to a corresponding continuous temperature profile, T(a), which we compute approximately, generalizing previous results for binary or multicomponent mixtures. If the system is driven, it evolves towards a stationary temperature profile, which is discussed for several driving mechanisms in dependence on the variance of the size distribution. For a uniform distribution of sizes, the stationary temperature profile is nonuniform with either hot small particles (constant force driving) or hot large particles (constant velocity or constant energy driving). Polydispersity always gives rise to non-Gaussian velocity distributions. Depending on the driving mechanism the tails can be either overpopulated or underpopulated as compared to the molecular gas. The deviations are mainly due to small particles. In the case of free cooling the decay rate depends continuously on particle size, while all partial temperatures decay according to Haff's law. The analytical results are supported by event driven simulations for a large, but discrete number of species.Comment: 10 pages; 5 figure

    Glassy correlations and microstructures in randomly crosslinked homopolymer blends

    Full text link
    We consider a microscopic model of a polymer blend that is prone to phase separation. Permanent crosslinks are introduced between randomly chosen pairs of monomers, drawn from the Deam-Edwards distribution. Thereby, not only density but also concentration fluctuations of the melt are quenched-in in the gel state, which emerges upon sufficient crosslinking. We derive a Landau expansion in terms of the order parameters for gelation and phase separation, and analyze it on the mean-field level, including Gaussian fluctuations. The mixed gel is characterized by thermal as well as time-persistent (glassy) concentration fluctuations. Whereas the former are independent of the preparation state, the latter reflect the concentration fluctuations at the instant of crosslinking, provided the mesh size is smaller than the correlation length of phase separation. The mixed gel becomes unstable to microphase separation upon lowering the temperature in the gel phase. Whereas the length scale of microphase separation is given by the mesh size, at least close to the transition, the emergent microstructure depends on the composition and compressibility of the melt. Hexagonal structures, as well as lamellae or random structures with a unique wavelength, can be energetically favorable.Comment: 19 pages, 10 figures. Submitted to the Journal of Chemical Physics (http://jcp.aip.org

    Molekular zielgerichtete Therapie

    Get PDF
    Zusammenfassung: Bis vor knapp 10Jahren stützte sich die Tumortherapie auf 3Säulen: die Chirurgie, die Strahlentherapie und die zytostatische Chemotherapie. Eine definitive Heilung im Bereich der soliden Tumoren versprach meist nur eine vollständige Entfernung des Tumors durch den Chirurgen. Radiotherapeuten und Onkologen konnten nur einem kleinen Teil ihrer Patienten langfristig helfen. Antikörpertherapien, Antitumorvakzinierungen oder gar genspezifische, individualisierte Therapieformen existierten zwar als Visionen, diese schienen Mitte der 90er-Jahre von einer klinischer Anwendung noch weit entfernt. Mit der Einführung des Antikörpers Rituximab (1997) und des Tyrosinkinaseinhibitors Imatinib (2001) in die klinische Praxis kamen 2 neuartige Substanzen auf den Markt, die Denken und Vorstellungen in der Onkologie grundsätzlich veränderten. Diese Therapeutika ließen aus Visionen Realitäten werden, die der Pharmaindustrie, den Klinikern und Patienten neue Perspektiven bezüglich Machbarkeit und kommender Möglichkeiten im Bereich der Tumortherapie eröffnet haben. Im Folgenden soll ein Überblick über die Entwicklung der 4.Säule der Tumortherapie, der sog. "targeted therapy", gegeben werde

    Elasticity of highly cross-linked random networks

    Full text link
    Starting from a microscopic model of randomly cross-linked particles with quenched disorder, we calculate the Laudau-Wilson free energy S for arbitrary cross-link densities. Considering pure shear deformations, S takes the form of the elastic energy of an isotropic amorphous solid state, from which the shear modulus can be identified. It is found to be an universal quantity, not depending on any microscopic length-scales of the model.Comment: 6 pages, 5 figure

    Glassy states and microphase separation in cross-linked homopolymer blends

    Full text link
    The physical properties of blends of distinct homopolymers, cross-linked beyond the gelation point, are addressed via a Landau approach involving a pair of coupled order-parameter fields: one describing vulcanisation, the other describing local phase separation. Thermal concentration fluctuations, present at the time of cross-linking, are frozen in by cross-linking, and the structure of the resulting glassy fluctuations is analysed at the Gaussian level in various regimes, determined by the relative values of certain physical length-scales. The enhancement, due to gelation, of the stability of the blend with respect to demixing is also analysed. Beyond the corresponding stability limit, gelation prevents complete demixing, replacing it by microphase separation, which occurs up to a length-scale set by the rigidity of the network, as a simple variational scheme reveals.Comment: 7 pages, 6 figure

    Three-phase coexistence with sequence partitioning in symmetric random block copolymers

    Full text link
    We inquire about the possible coexistence of macroscopic and microstructured phases in random Q-block copolymers built of incompatible monomer types A and B with equal average concentrations. In our microscopic model, one block comprises M identical monomers. The block-type sequence distribution is Markovian and characterized by the correlation \lambda. Upon increasing the incompatibility \chi\ (by decreasing temperature) in the disordered state, the known ordered phases form: for \lambda\ > \lambda_c, two coexisting macroscopic A- and B-rich phases, for \lambda\ < \lambda_c, a microstructured (lamellar) phase with wave number k(\lambda). In addition, we find a fourth region in the \lambda-\chi\ plane where these three phases coexist, with different, non-Markovian sequence distributions (fractionation). Fractionation is revealed by our analytically derived multiphase free energy, which explicitly accounts for the exchange of individual sequences between the coexisting phases. The three-phase region is reached, either, from the macroscopic phases, via a third lamellar phase that is rich in alternating sequences, or, starting from the lamellar state, via two additional homogeneous, homopolymer-enriched phases. These incipient phases emerge with zero volume fraction. The four regions of the phase diagram meet in a multicritical point (\lambda_c, \chi_c), at which A-B segregation vanishes. The analytical method, which for the lamellar phase assumes weak segregation, thus proves reliable particularly in the vicinity of (\lambda_c, \chi_c). For random triblock copolymers, Q=3, we find the character of this point and the critical exponents to change substantially with the number M of monomers per block. The results for Q=3 in the continuous-chain limit M -> \infty are compared to numerical self-consistent field theory (SCFT), which is accurate at larger segregation.Comment: 24 pages, 19 figures, version published in PRE, main changes: Sec. IIIA, Fig. 14, Discussio
    corecore